
_u-U - -----

Parallel Preconditioning and Approximate Inverses
on the Connection Machine

Marcus Grote

Dept. of Computer Science
Stanford University
Stanford, CA 94305

grote@na-net.stanford.edu

Abstract

We present a new approach to preconditioning for
very large, sparse, non-symmetric, linear systems. We
explicitly compute an approximate inverse to our orig-
inal matrix that can be applied most efficiently for it-
erative methods on massively parallel machines. The
algorithm and its implementation on the Connection
Machine CM-2 are discussed in detail and supported
by timings obtained from real problem data.

1 Introduction

The solution of large sparse linear systems of equa-
tions arises quite frequently as the most important
computational kernel in a large number of scientific
applications. If the underlying application is based for
example on a finite element or finite volume method
then the coefficient matrix will usually be unstruc-
tured general sparse. For computational fluid dynam-
ics applications involving unstructured meshes [3, 9],
and for structural analysis applications with inho-
mogenous materials the coefficient matrix will also be
unsymmetric.

Solution methods for such large, unstructured, un-
symmetric, general sparse methods based on iterative
solvers usually involve a preconditioning phase, which
is designed to improve the convergence of the iter-
ative solver. Up to today, preconditioning methods
on highly and massively parallel systems have faced a
major difficulty. The most successful preconditioning
methods in terms of accelerating the convergence of
the iterative solver such as incomplete LU factoriza-
tions are notoriously difficult to implement on parallel
machines for two reasons: (1) the actual computa-
tion of the preconditioner is not very floating-point

Horst D. Simon

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035
simon@nas.nasa.gov

intensive, but requires a large amount of unstructured
communication, and (2) the application of the precon-
ditioning matrix in the iteration phase (i.e. triangular
solves) are difficult to parallelize because of the re-
cursive nature of the computation. Triangular solves
on parallel machines usually require a reordering of
the problem in the form of a wavefront approach, e.g.
[1,8].

Here we present a new approach to preconditioning
for very large, sparse, unsymmetric, linear systems,
which avoids both difficulties. We explicitly compute
an approximate inverse to our original matrix. This
new preconditioning matrix can be applied most effi-
ciently for iterative methods on massively parallel ma-
chines, since the preconditioning phase involves only
a matrix-vector multiplication, with possibly a dense
matrix. Furthermore the actual computation of the
preconditioning matrix has natural parallelism. For a
problem of size n, the preconditioning matrix can be
computed by solving n independent small least squares
problems. .

The new algorithm thus exhibits a natural paral-
lelism, which can be easily exploited on massive par-
allel SIMD machines. In this paper only the precondi-
tioning algorithm and its implementation on the Con-
nection Machine CM-2 are discussed in detail. The
complete linear equation solver and a comaprison of
the performance on different machines will be reported
in a future report[6].

2 Preconditioning Based on Approxi-
mate Inverses

We shall consider the numerical solution of very
large but sparse linear systems of the form

Ax = b,

-- nun n nn n

x, bE RR

without assuming any special properties for A such as
symmetry or definiteness. The order of A typically lies
between, say, one thousand and one million. However,
A usually has just a few nonzero elements per column.

Direct methods based on the LU factorization of A,
generally produce fill-in so that L and U might need
to be stored on peripheral storage and the I/O costs
tend to consume most of the execution time. Iterative
methods on the other hand do not suffer from fill-
in, and with effective preconditioned and accelerated
methods one may derive very efficient algorithms such
as GMRES, QMR, etc. - an excellent survey can be
found in [2].

Our aim is to construct an approximate inverse M
to A and consider applying the iterative solver to the
preconditioned system

AMy = b, M ~ A-1, x=My.

Set ts to be the execution time per step without pre-
conditioning, and Tp the total execution time with pre-
conditioning. Roughly speaking,

Tp = t1 + np x (ts + tm),

where t1 is the time spent initially to compute the ap-
proximate inverse M, tm the time necessary to com-
pute M v for some vector v and np the number of
iterations. In the same way, the total time without
preconditioning might be expressed by

Ts = ns x ts .

The "art of preconditioning" consists now in finding a
matrix M which minimizes the ratio Tp/Ts.

From the expression for Tp we can immediately de-
duce what kind of conditions M must satisfy to be
effective:

. The crucial time which needs to be minimized is
of course tm, since it occurs at each iteration, i.e.
M v must be very fast on the underlying architec-
ture.

. Since np depends heavily on the closeness of M to
A -1, it is often worthwile to spend a little more
time in the computation of M, than merely apply
diagonal scaling for instance. Hence, if the num-
ber of iterations np is reduced to np, the total ex-
ecution time will be lowered to t1 +np x (ts +tm).
However, we must keep in mind that tm might
increase for a more sophisticated approximate in-
verse.

We shall describe one particular choice for M which
seems to satisfy these two main requirements in an
optimal way for the Connection Machine CM-2.

3 Overview of the algorithm

The CM-2 is a massively parallel SIMD machine,
and can, as our preliminary timings show, compute
M v extremely rapidly when M is a banded matrix.
Thus it seems natural to require that M be a matrix
with, say, 2p + 1 diagonals, p ~ 0, so that we may
keep tm very small relatively to the time spent for
computing Av. The question is now,'how should we
compute a matrix M close to A-1, and 'close' in what
sense?

The closeness might be measured in some norm 1111,

so that we need to find an M which minimizes

IIAM-Ili.

In general, this problem is even harder than solving
Ax = bj the main idea of our approach is to choose the
norm to be the Frobenius norm, so that the problem
decouples, i.e. the columns of M, denoted by Mk, can
be computed independently and in parallel.

Let us denote by Ak the columns of A. It is rela-
tively simple to realize that to minimize

IIAM - IIIF,

we need to minimize

IIAMk - ekll2

for each k individually,1 :::;k :::;n (see [7]). Sinceeach
Mk contains at most only 2p + 1 nonzero elements, we
need to solve n independent least square problems of
size only n x (2p+ 1). This can be done by construct-
ing, factorizing and solving all the normal equations
simultaneously with parallelism of order n, where n
is the dimension of the original system. To construct
the normal equations, we must compute the sparse in-
ner products of each column Ak with itself and its 2p
nearest neighbors.

We do not discuss any theoretical results concern-
ing the effectiveness of the preconditioning approxi-
mate inverse in the general case. The algorithm has
been motivated by a paper by Demko et al. [4],which
shows that the inverse of a sparse matrix has entries
exponentially decaying away from locations which are
nonzero in the original matrix.

4 Preliminary timings

We shall present some preliminary timings com-
puted on two different CM-2's: an 8K processor ma-
chine at Stanford University, and a 32K processor ma-
chine located at NASA Ames Research Center. We

shall pursue one particular choice for implementing
the sparse inner products (SPIP), which has the ad-
vantage of necessitating only a minimum amount of
memory.

So far we have tested only the preconditioning
phase on a number of test matrices from the Boeing-
Harwell collection. Some of the results of our tests and
their performance on the CM-2 are given below. We
have also implemented the algorithm on the Cray Y-
MP and reached complete agreement in the numerical
accuracy of the computed preconditioning phase.

In this section we focus on very specific and small
instruction groups. Let M be an n x n real matrix with
p nonzero diagonals, p odd. We now compare three
different ways of multiplying M with some vector x:

a) Using the general sparse matrix/vector multiply
routine supplied by the CMSSL library. One
sparse-matvec-setup is done initially, and not
taken into account for the timings.

b) Using a customized multiply that involves 2(p-1)
CSHIFT operations, M being stored by colums.

c) Same as b) where M is stored by rows, so that only
(p - 1) CSHIFT operations are necessary.

Average time in seconds with p = 3 for 100
mat/vector multiplications on a 4K machine is given
below

Average number of MFlops for the same numerical
experiment is given below

From these results it is obvious that one should
never use the general sparse matrix/vector multiply
routine when the. matrix is tridiagonal, since it is al-
most a hundred times slower. Let us now take a closer

look at option c) for different values of p .

Average time in seconds and MFlops with p =
3,5,7,9 for 100 mat/vector multiplications on a 4K
machine are given below, n =32K:

During these extensive timings, we noticed some
additional interesting behaviors:

The first version of the sparse matrix/vector mul-
tiplication was written in such a way to accept p as
a parameter and then by means of calculated indices
to perform the cshift's and the multiply's in do loops.
This version was taking an additional 70% amount
of time than the second and more optimized version,
where for each value of p the appropriate instructions
were separately coded.

We remark also that whenever M is stored by
colums like under b), it can easily be transposed and
then used as under c) at relatively cheap cost. Again
we believe that a transposition routine minimizing
communication costs for each value of p separately
would probably yield the best results.

The overhead due to setting up the multiplication
into a subroutine is negligible.

We executed the same program on a different 8K
processors Connection Machine and got the following
results. Compilation was always done under the slice-
wise option.

Average time in seconds and MFlops with p =
3,5,7,9 for 100 mat/vector multiplications on a 8K
machine are givenbelow, n = 32K:

Average time in seconds and MFlops with p =
3,5,7,9 for 100 mat/vector multiplications on a 32K
machine are given below, n =32K:

It should be noted here that all these timings are
subject to fluctuations which sometimes can be far off.

In addition, we present some timings that demon-
strate the effectiveness of the CM-2 for some crucial,
massively parallel, low-level operations. We consider
real arrays of length 32K and perform both 100 circu-
lar shifts and 100 Hadamard products (element by ele-
ment multiplications) on processor arrays of increasing
size. So that for n = 32K,

n 1K 4K 16K 32K

a) 0.6362 1.468 5.195 10.11

b) 0.0348 0.0419 0.0871 0.148

c) 0.0228 0.02549 0.05922 0.104

n 1K 4K 16K 32K

a) 0.80 1.4 1.57 1.62
b) 14.7 48.9 94.1 111

c) 22.4 80.3 138 157

p 3 5 7 9
time 0.1045 0.1773 0.2776 0.3458
MFlops 157 166 153 161

p 3 5 7 9
time 0.0597 0.104 0.158 0.205
MFlops 275 284 270 272

p 3 5 7 9
time 0.04064 0.06632 0.08573 0.11390

MFlops 403 445 497 489

~~ ---

Ai?,a general remark we may say that the execution
time of a CSHIFT operation is almost processor in-
dependent; the Hadamard product's execution time,
however, decreases linearly with increasing number of
processors. This can be explained as follows: when
we increase the number of processors from say 4K to
32K, parallelism for the CSHIFT increases; however,
communication costs do increase as well, since in the
4K case, a CSHIFT of part of a vector residing on one
processor doesn't involve any "physical" communica-
tion at all. In the Hadamard product case, no commu-
nications are necessary, so that increasing parallelism
scales up very well.

5 Sparse
(SPIP)

Parallel Inner Product

In fairly many applications, one encounters the fol-
lowing problem. Given two sets VI and V2 of n vec-
tors each, we would like to compute the inner product
of the ith vector in set VI with the ith vector in set
V2. Of course this problem can be easily fully par-
allelized on a massively parallel machine such as the
CM, even for very large n. This at first seemingly
trivial problem, becomes far more difficult when the
vectors considered are supposed to be sparse.

One commonly used approach is to scatter the
packed vectors into full length vectors of size n, and
then to perform the inner products on the full vec-
tors, regardless of the sparsity pattern. This creates a
large overhead in the computation, since most of the
operations involve zeros. Although this approach can
be very interesting on a vectorizing computer, where
the inner product is extremely fast, it is prohibitive on
the CM because of the relatively low performance of
the CM processors in floating point arithmetic. Even
though this last issue is debatable, the bottom line
is that for very large n, say 32K, there is simply not
enough physical memory on the CM-2, since 32K real
vectors of length 32K take 4 Gigabytes of memory.

Let us now present a different approach that does
not demand either computation overheads or enor-
mous memory space allocations. We must always keep
in mind that the CM is a SIMD machine, and since the
sparsity structures of the vectors are supposed to be
totally different, that one first "simple-minded" imple-
mentation might be merely rejected by the compiler.

5.1 Description of the SPIP algorithm

We give a complete and detailed description of the
algorithm, emphasizing features particular to the CM.
We suppose that an upper bound MAX to the maxi-
mum number of nonzero elements per vector is known.
Now the ith vectors of both sets VI and V2 are laid

out on the ith processor along the serial axis. Each
vector is described in the obvious way by two arrays
of MAX length. The first one, V1(j,i), is a real array
which contains all the nonzero elements of the ith vec-
tor of VI, eventuallypatted with zeros at the end. The
second one, n(j,i), is an integer array which contains
the row indices and hence describes the sparsity struc-
ture. For instance, if A were an n x n sparse matrix
stored by colums, then A(i,j) = V1(Il(i,j),j).

All the following variables but VI, V2, II, 12 are
one dimensional ar:t:ays laid out along the parallel
(:NEWS) axis along the processor array. The resulting
inner products are returned in P, and fully computed
in parallel. Furthermore, we define two arrays IX1
and IX2 which contain the index j for the next ele-
ment to be considered in each vector.

step 1 Initialize IX1 and IX2 to 1, and P to zero.

step 2 Copy the actual row index of the next ele-
ment to be considered in each vector into tem-

porary arrays LOW1 and LOW2. (This step is
necessary because CM FORTRAN does not al-
low arithmetic operations on variables such as
A(IN DEX(I), I), and is done efficiently - ac-
cording to the CM-FORTRAN User's Guide- by
the CMF -AREF _lD subroutine.)

set 3 Compute a logical MASK, true whenever
LOW1 is equal to LOW2.

step 4 Copy the actual real value of the next element
to be considered in each vector into temporary
arrays VL1 and VL2.

step 5 Where MASK is true, compute P = P +
VL1 * VL2, and increment IX1 (and IX2, ac-
tually done under step 6).

step 6 Where LOW1 greater or equal to LOW2 in-
crement IX2, elsewhere increment IXI.

step 7 If any (V L1 =1=0 A V L2 =1=0) goto step 2.

One iteration uses at mosts 2n flops computed in
parallel, i.e. at most 2 Hops per processor. It can
be easily shown that this algorithm terminates after

processors 4K 8K 32K
time for CSHIFTS 0.0173 0.0122 0.0088
time for Hadam. Prod. 0.0319 0.0156 0.0048

at most MAX iterations, and takes at least MAX it-
erations (for consistent data, i.e. MAX not overesti-
mated, etc.). In the actual implementation, the se-
rial dimension is MAX+l instead of MAX; thus, we
introduce a memory allocation overhead of n (1 float-
ing number per processor), to avoid additional testing.
However, this does not create any computational over-
head: the algorithm performs at least on one processor
the absolute minimum number of multiplications nec-
essary to compute the inner product.

5.2 Performance analysis

We applied a first implementation to 38K sparse
vectors of full length 38K, with.one thousand nonzero
elements in each, on a 32K CM. The execution time
was 1.24 seconds in the best, and 2.48 seconds in the
worst case. In the best case, the vectors in VI had
the same sparsity structure as the vectors in V2 . In
the worst case, the positions of the nonzero elements
in V2 were shifted by one with respect to the nonzero
elements in VI. These timings confirm of course the
intuitive idea that the execution time should be ex-

actly proportional to the number of (identical) iter-
ations executed serially. Since the worst case takes
twice as many iterations (2 MAX) as the best case, it
also takes twice as long to execute. More timings con-
firmed that the execution time is exactly proportional
to MAX (for a same sparsity structure), which again
is obvious for similar reasons.

6 The complete algorithm

In this section we give a precise description of the
algorithm and introduce some notations.

Let A be an n x n real sparse matrix. We denote by
Ak the kth column of A. Let MAX be the maximum
number of nonzero elements per column. To each col-
umn Ak we associate a row index vector rk so that
aij =Aj(rj(i)). Since A is sparse, we only store its
nonzero elements, so that for each k, Ak and rk are of
length MAX, padded with zeros at the end if neces-
sary. In the following, assume that A is initially stored
by columns, i.e. that for each k, Ak and rk reside on
the same processor. We allocate as well a real work
array Wk of the same size as Ak with some row index
array.

Denote by M the approximate inverse of A, Mk its
kth column. We impose a banded structure upon M
and denote its bandwidth by p, i.e. M has 2p + 1
nonzero diagonals. Each M" - whichare the un-
knowns - resides on the same processor as Ak; Mk

is a 2p + 1 real vector, Mk(i) = m(k+p+!-i)k, padded
with zeros when either i ~ n+p+2-k or i ~ p+l-k,
1 ~ i ~ 2p + 1.

Consider now the (2p + 1) X (2p + 1) real matrices
Bk, 1 ~ k ~ n, where

Bk(i,j) =ALp-HiAk-p-Hj , 1 ~ i,j ~ 2p+ 1

Bk is padded with zeros where i ~ p + 1 - k, i ~
n + p + 2 - k, j ~ p + 1- k or j ~ n + p + 2 - k, unless
i = j since then we set Bk(i,j) = 1.0 so that the Bk
be nonsingular. Obviously the Bk are symmetric and
positive definite, so that we need only compute and
store their lower part.

Finally we define the real vectors Ck of length 2p +
1, Ck(i) = Ak(k-p-Hi), i.e. the 2p+l elements in the
kth row of A (now seen as a dense matrix) clustered
around the diagonal. Again, Ck is padded with zeros
when i ~ p+l-k or i ~ n+2+p-k, 1 ~ i ~ 2p+l.

The full scheme can be outlined as follows:

. Construct the matrices Bk

. FactorizeBk =LkDkLI

. Solve LkYk = Ck, DkZk = Yk, and LI Mk = Zk

We now discuss each phase individually, assuming
that each kth processor contains Ak E R2MAX for
1 ~ k ~ n, and Ck E R2p+!.

6.1 Construct the matrices Bk

This is a critical phase, since it is the only one which
involves inter-processor communications which could
lower the performance considerably. We recall that the
matrices Bk contain the inner products of the Ak-p
through Ak+p columns. It is important to realize that
Bk'S k + jth row is equal to Bk+j's kth row, for -p ~
j ~ p . In addition we need two small work arrays Pk
and Qk of size 2p + 1 each as before laid out through
the processor array.

We start by setting Pk(1) = AI Ak, which is easily
computed in parallel without any conditional state-
ment, and set Wk = Ak. Now, for I = 2,...2p+ 1
do Wk = CSHIFT(Wk, DIM=2, SHIFT=1), so that
Wk = Ak+l-l, and set Pk(l) = AIwk end do - of
course the row indices were shifted as well. Basically
this previous loop performs the sparse inner product
of each Ak with Ak+l, ...Ak+2p. Now save Pk in Qk for
future purposes. All the entries in the Bk have been
computed, but they still need to be shifted to the p
left and right neigbors, since they all overlap. This
can be done in a quite tricky way, in order to minimize

- -

communication costs. It should be noted that the fol-
lowing communications involve only vectors of length
2p+ 1, in contrast to the previous loop, where the vec-
tors were of length 2MAX. First we shift Pk to all the
right neighbors: for j =p downto 1, Pk=CSHIFT(Pk,
SHIFT=-l), Bk(l,j : 2p + 1) = P(l : 2p + 2 - j)
end do. Similarly for the left neighbors using Qk, for
j = p+2 to 2p+ 1, do Qk = CSHIFT(Qk,SHIFT=l),
Bk(j,j : 2p+ 1) = Qk(l: 2p+ 2 - j), end do.

Since we are performing CSHIFT operations, we
must take into account wrap-around effects. To avoid
destroying values at the ends of the array, we simply
allocate 2p additional columns for A which are set to
zero initially. An alternative approach, where we con-
sidered the EOSHIFT instead of the CSHIFT com-
mand, was quickly abandonned because of the pro-
hibitive slowness of the EOSHIFT command (same
effect as CSHIFT without wrap-around).

6.2 LDLT decomposition of Bk

Since all the Bk are symmetric and positive definite,
we can factorize Bk =LkDkLl- As an alternative, we
take a look at the GGT Cholesky factorization which
requires 2p + 1 square roots, and compare operation
counts for Algorithms 4.1.2 and 4.2.1 [5]; here n is
the dimension of the system which in our application
(=2p+1):

Opcounts for LDLT

0 ts fi GGT

Additional timings, performed on a 4K machine
upon vectors of length 4K, showed that square roots
are 20% slower than divisions, which are twice as ex-
pensive as additions or multiplications. More pre-
cisely, if x and y are two vectors of length 4K laid out
along a4K :NEWS array, then time(x*y)=time(x+y),
time(x / y)= 2 time(x+y) , and time(y'x)=2.4 time(x+
y). Thus we decided to go for the LDLT factorization
algorithm, as described in [5] under Algorithm 4.1.2 ,

since it involves fewer divisions, no square roots, and a
comparable amount of additions and multiplications.
We expect a very high performance, since no commu-
nications are necessary during this phase.

6.3 LkYk = Ck, DkZk = Yk, and LI Mk = Zk

This final step is straightforward, and again we use
the standard forward and back substitution algorithms
3.1.1 and 3.1.2 [5] (see the previous section for opera-
tion counts).

7 Extensive timing data

We consider three matrices taken from the well-
known Boeing-Harwell collection, which arise in black
oil simulators: SHERMAN1, SHERMAN2 and SHER-
MAN5.

For the SHERMAN1 black oil simulator, n = 1000,
and A contains 3750 nonzero elements:

On an 8K processor CM-2, we obtain:

Because of the small size of the matrices, not only
do we get very low performances, but the program
runs faster on the smaller 8K processor machine than
on the full 32K processor one. This again comes from
the fact that the 32K full processor array is merely too
large for these small matrices.

For the SHERMAN2black oil simulator, n = 1080,
and A contains 23094 nonzero elements:

Op Factor Solve Total

+ n"-n n2 -n n"+6n"-7n
-p;- Ii
n"+6n"-7n n2 n n"+12n"-13n

/ n n 2n
VX 0 0 0

- -

Op Factor Solve Total

+ n"-n n2 -n n"+6n"-7n
-p;- Ii
n"+3n"+2n n2 -n n"+9n"-4n

Ii Ii

/ n 2n 3n
VX n 0 n

Results for SHERMANl

2p+ 1 8K proc 32K proc
time Mflops time Mflops

1 0.003 12.7 0.003 11.9
7 0.07 10.2 0.10 7.9

13 0.17 17.1 0.24 12.3
19 0.32 23.3 0.47 16.0
25 0.53 28.6 0.81 18.9
31 0.82 33.0 1.27 21.3
37 1.20 36.7 1.89 23.3
43 1.69 39.5 2.70 24.8
49 2.31 41.9 3.70 26.1

We notice here, like in all other examples, that there
is a big 'jump' from 2p + 1 = 1, ie p = 0 and M is
diagonal, to 2p + 1 > 1. This is because in the case
of p = 0, neither nearest neighbor communications
(CSHIFT instructions) nor indirect addressing (CMF-
AREF-1D instruction) is necessary; thus everything is
purely local and very fast.

For the SHERMAN5 black oil simulator, n = 3312,
and A contains 20793 nonzero elements:

Here we discover on one hand that the 32K proces-
sor machine performs better than the 8K smaller one,
and on the other hand, that the MFlops rate is almost
doubled. This is now clearly due to the fact that the
size of the matrix has increased, so that we start mak-
ing use of the massively parallel power available on the
CM-2. Therefore we believe that for much larger prob-
lems of the order of, say, lOOK, our algorithm would
yield very high performances.

We anticipate to solve problems of order up to
60,000 on the CM-2 by the time of the conference. It
should be mentioned that for matrices in the range of
sizes ranging from about n RJ1,000 to n RJ10,000 the
performance on a single processor ofthe Cray Y-MP is
about 30 Mfiops, which appears to be the asymptotic
limit for the Cray Y-MP.

8 Conclusions

We have addressed the problem of preconditioning
very large but sparse matrices of general structure on
the Connection Machine CM-2. We pointed out that
the main issue is not the pre-computation of the pre-
conditioner, but the speed at which it must be applied
within the iterative solver at each step. One optimal
choice for the CM-2 is to compute an explicit, banded,
approximate inverse to our original matrix, which may
be applied close to the machine's peak performance.
We presented an algorithm and its implementation
on the Connection Machine; additional timings make
us believe that even the pre-computation - not only
the application - of the preconditioner would be ex-
tremely efficient for general, very large systems. We
hope to support our expectations by numerical exper-
iments in the near future.

9 Acknowledgements

We would like to thank F. Alizadeh, O. Ernst, G.
Starke, Z. Johan, B. Biondi, and Prof. G. Golub for
their interesting and very helpful comments.

References

[1] E. Anderson and Y. Saad. Solving sparse triangu-
lar linear systems on parallel computers. Int. J.
High Speed Computing, 1(1):73-96, 1989.

[2] O. Axelsson. A survey of preconditioned iterative
methods for linear systems of algebraic equations.
BIT, 25:166 - 187, 1985.

[3] T.J. Barth. On unstructured grids and solvers.
In Computational Fluid Dynamics, Lecture Series
1990-03. Von Karman Institute, Belgium, March
1990.

[4] S. Demko, W. F. Moss, and P. W. Smith. Decay
rates for inverses of band matrices. Math. Comp.,
43(168):491 - 499, 1984.

[5] G. Golub and C. Van Loan. Matrix Computations.
Johns Hopkins University Press, 1983.

[6] M. Grote and H. Simon. Approximate inverse pre-
conditioners. (Technical Report in preparation,
1992).

[7] 1. Yu. Kolotilina and A. Yu. Yeremin. Factorized
sparse approximate inverse preconditionings. 1990.

Results for SHERMAN2
2p+ 1 8K proc 32K proc

time Mflops time Mflops
1 0.003 44.0 0.004 40.3
7 0.25 6.1 0.30 5.1

13 0.53 8.2 0.65 6.8
19 0.88 10.9 1.10 8.7
25 1.29 13.9 1.68 10.7
31 1.78 17.2 2.38 12.9
37 2.36 20.5 3.23 14.9
43 3.04 23.6 4.25 16.9
49 3.85 26.5 5.48 18.6

Results for SHERMAN5
2p+ 1 8K proc 32K proc

time Mflops time Mflops
1 0.004 44.2 0.003 57.3
7 0.19 11.1 0.11 18.4

13 0.43 16.2 0.25 27.4
19 0.74 22.3 0.43 38.1
25 1.14 28.5 0.66 49.2
31 1.67 34.1 0.95 59.7
37 2.32 39.3 1.31 69.6
43 3.14 43.8 1.76 78.0
49 4.12 47.8 2.29 81.9

[8] J. Saltz. Automated problem scheduling and re-
duction of synchronization delay effects. Technical
Report 87-22, ICASE, July 1987.

[9] V. Venkatakrishnan and D. Mavriplis. Implicit
solvers for unstructured meshes. Technical Report
RNR-91-16, NASA Ames Research Center, Mof-
fett Field, CA 94035, April 1991.

